Challenges for the Governance of Synthetic Biology and Implications for UN Security Council resolution 1540 (2004)

Nancy Connell, PhD Johns Hopkins Center for Health Security US-NAS Board on Life Sciences

US-NAS Board on Life Sciences Professor Emerita, Rutgers NJ Medical School

Global markets are the drivers of advances in S&T

The biotech market will grow at an average annual growth rate 11.6% (2012 to 2017) and reach a value worth USD 727.1 billion by 2025.

The synthetic biology market will grow at an average annual growth rate of 44.2 %(2017-2020) and reach a value worth USD 38.7 billion by 2020.

http://www.prnewswire.com/news-releases/ https://www.grandviewresearch.com/press-release/ global-biotechnology-market http://www.bio-itworld.com/

What is synthetic biology?

 SynBio collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms.

 SynBio is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution.

It is also possible to imagine malicious uses that could lead to events that might threaten the health and safety of citizens, destabilize governments, disrupt social enterprises, destroy agriculture and the global economy, and imperil the very survival of the planet.

Enabling technologies for synbio

- DNA/RNA/protein sequencing and synthesis
- Microfluidicis
- Nanotechnology
- Modularity
- Robotics
- Synthetic transcription factors
- Biosensors

Key SynBio approaches in use

Approach	Beneficial application
Re-creating known bacteria, viruses, algae	Vaccine design, other MCMs
Making existing pathogens more dangerous	Pathogenesis studies
Creating new bacteria or viruses	Biofuel production or cleanup
Manufacturing chemicals using metabolic pathways	Pharmaceuticals, biofuels
Modifying the human microbiome	Reprogramming the gut
Modifying the human immune system	Immunotherapeutics
Modifying the human genome	Somatic vs germ line

TABLE 7-3 A summary of the relative maturity of selected convergent technologies. For each column, darker shading indicates the technology is in routine use for that community, lighter shading indicates emerging use, and white background indicates little or no use. Adoption flows from left to right in most cases.

Technology	In development	In use by developers of the technology	In use by the synthetic biology community	In use by the molecular biology community	In use by amateur biologists
Gene therapy					
Nanotechnology	-				
Automation					
Additive manufacturing					
Health informatics					

Usability of the Technology

- Ease of use
- Rate of development
- Barriers to use
- Synergy with other technologies

Usability as a Weapon

- Production and delivery
- Scope of casualty
- Predictability of results

Requirements of Actors

- Access to expertise
- Access to resources
- Organizational footprint requirements

Potential for Mitigation

- Deterrence and prevention capabilities
- Capability to recognize an attack
- Attribution capabilities
- Consequence management capabilities

FIGURE S-1 Framework for assessing concern. The framework for assessing concern consists of four factors, along with descriptive elements within each factor. The factors are Usability of the Technology, Usability as a Weapon, Requirements of Actors, and Potential for Mitigation.

1. Usability of the technology

2. Usability as a weapon

3. Requirements of actors

4. Potential for mitigation

Biodefense in the age of synthetic biology, US-NASEM 2018

JOHNS HOPKINS CENTER FOR HEALTH SECURITY

Level of Concern about the Capability

WIRED

Scientists Build First Man-Made Genome; Synthetic Life Comes Next

By Alexis Madrigal 01.24.08 | 11:00 AM

Originally published in *Science* Express on 28 June 2007 *Science* 3 August 2007: Vol. 317. no. 5838, pp. 632 - 638 DOI: 10.1126/science.1144622

RESEARCH ARTICLES

Genome Transplantation in Bacteria: Changing One Species to Another

Carole Lartigue, John I. Glass,^{*} Nina Alperovich, Rembert Pieper, Prashanth P. Parmar, Clyde A. Hutchison, III, Hamilton O. Smith, J. Craig Venter

The Venter Experiments

RESEARCHARTICLE

Complete Chemical Synthesis, Assembly, and Cloning of a *Mycoplasma genitalium* Genome

Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas, Mikkel A. Algire, Chuck Merryman, Lei Young, Vladimir N. Noskov, John I. Glass, J. Craig Venter, Clyde A. Hutchison III, Hamilton O. Smith*

We have synthesized a 582,970—base pair *Mycoplasma genitalium* genome. This synthetic genome, named *M. genitalium* JCVI-1.0, contains all the genes of wild-type *M. genitalium* G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4

genome, we needed to establish convenient and reliable methods for the assembly and cloning of much larger synthetic DNA molecules.

Strategy for synthesis and assembly. The native 580,076-bp *M. genitalium* genome sequence (Mycoplasma genitalium G37 ATCC 33530 genomic sequence; accession no. L43967) (3) was partitioned into 101 cassettes of approximately 5 to 7 kb in length (Fig. 1) that were individually synthesized, verified by sequencing, and then joined together in stages. In general, cassette boundaries were placed between genes so that each cassette contained one or several complete genes. This will simplify the future deletion or manipulation of the genes in individual cassettes. Most cassettes overlapped their adjacent neighbors by 80 bp; however, some segments overlapped by as much as 360 bp. Cassette 101 overlapped cassette 1, thus completing the circle.

Short "watermark" sequences were inserted in cassettes 14, 29, 39, 55 and 61. Watermarks are

The Venter Experiments

Home > Science Magazine > 2 July 2010 > Gibson et al., pp. 52 - 56

Article Views	Originally published in Science Express on 20 May 2010 Contents Next > Science 2 July 2010;						
> Abstract	Vol. 329. no. 5987, pp. 52 – 56						
> Full Text (HTML)	DOI: 10.1126/science.1190719						
> Full Text (PDF)	RESEARCH ARTICLES						
Figures Only	Greatian of a Bastarial Call Controlled by a Chamically Synthesized Consume						
 Supporting Online Material 	Daniel G. Gibson, ¹ John I. Glass, ¹ Carole Lartigue, ¹ Vladimir N. Noskov, ¹ Ray-Yuan Chuang, ¹						
Podcast Interview	Mikkel A. Algire, ¹ Gwynedd A. Benders, ² Michael G. Montague, ¹ Li Ma, ¹ Monzia M. Moodie, ¹						
VERSION HISTORY	Chuck Merryman, ¹ Sanjay Vashee, ¹ Radha Krishnakumar, ¹ Nacyra Assad-Garcia, ¹ Cynthia Andrews-Pfannkoch, ¹ Evgeniya A. Denisova, ¹ Lei Young, ¹ Zhi-Qing Qi, ¹						
329/5987/52 (most recent)	Thomas H. Segall-Shapiro, ¹ Christopher H. Calvey, ¹ Prashanth P. Parmar, ¹ Clyde A. Hutchison, III, ² Hamilton O. Smith. ² J. Craig Venter ^{1,2,*}						
> science.1190719v1							

The Venter Experiments

CRISPR-edited algae with high biofuel yield created by ExxonMobil, Craig Venter's Synthetic Genomics

Bradley Fikes | San Diego Union-Tribune | June 21, 2017

SUSTAINABILITY

Can Algae Feed the World and Fuel the Planet? A Q&A with Craig Venter

The geneticist and entrepreneur hopes to use synthetic biology to transform microscopic algae into cells that eat up carbon dioxide, spit out oil and provide meals

International Genetically Engineered Machine Competition

Join us at the iGEM 2018 Giant Jamboree !

October 24 - 28, 2018 - Hynes Convention Center in Boston, MA, USA

Registry of Standard Biological Parts

IGEM	tools	catalog	repository	assembly	protocols	help	search	BBa_	
E V F A	Rowse /ell Docum requently Il The Part	Catalog nented Parts Used Parts is	Brow Promo RBS Coding Termin Backb Functio	vse by Type oters g sequences nators ones on	<u>C</u> All CF Bio Dru Ha Re Fre An Ge	Ollectio Curated RISPR Dremediat ug Deliver ardware eporter Pro eiburg TAR derson Pro	o ns Collections ion ry oteins LE romoters egration (mir	The to f bee bro typ sev cate imp niTn7) clas	e Registry has many ways ind parts. The Catalog has n improved to allow you to wse our collection by part e, chassis, function or by eral other ways. We made egories much more oortant in terms of ssifying parts to form the

basis of the catalog system.

Ine plasmid backbone

Plasmid Backbone

Why would you want to use more than one plasmid backbone?

One next can be used in sourced different plasmide backbanes. He secure a next from one plasmid backbane to enother

International Genetically Engineered Machine Competition

Imperial College 2016

Grand Prize Undergraduate Section

winners, Team Imperial, worked on developing a Genetically Engineered Artificial Ratio (GEAR) system to control population ratios in microbial consortia.

LMU-TUM_Munich 2016

Grand Prize Overergraduate

Section winners, Team LMU-TUM_Munich, worked on creating a novel bioink that exploits the rapid and specific interaction of biotin and its tetrameric binding protein streptavidin.

HSiTAIWAN 2016

Grand Prize High School Section

winners, Team HSiTAIWAN, worked to create a series of cheap, user-friendly E. coli biosensor that can detect the poison inside the Chinese Medicine by just examining the fluorescence intensity.

Manufacturing chemicals

- Medicines produced by plants and microbes have been used for centuries (infections, pain, hypertension, etc)
- Other chemicals include fuels, commodity and specialty chemicals, food ingredients
- Metabolic engineering of ever increasing complex pathways
- Harmful chemicals : toxins, anti-metabolites, controlled substances (opioids, explosives, chemical weapons)

Modifying the human microbiome

Why -

Human health is highly dependent on the microbiome Active area of research – correction of metabolic disorders in clinic

Methods -

Delivery of harmful cargo via the microbiome. Use of the microbiome to increase the impact of an attack. Engineered dysbiosis

Problems -

Enormous variation across populations

Homeostasis of the system – difficult to engineer

Modifying the human immune system

- Immune system is what defends us against infection; many pathogens attack by directly affecting the function of the immune system.
- Explosion in work on immunotherapy
- Engineering immune deficiency, hyperactivity, autoimmunity
- The current state of knowledge regarding immunity is such that it is likely far easier to craft an immunomodulatory weapon than an effective response to one (as we learned from HIV/AIDS)

Modifying the human genome

- It may be possible to insert engineered genes directly into the human genome via horizontal transfer, using CRISPR or nanolipid delivery. (vaccines, cellular reprogramming)
- Deletions or additions of genes, epigenetic modifications, small RNAs, CRISPR/Cas9, CRISPR-RNP.
- cause non-infectious disease, such as cancer or neurological debilitation, or to degrade immunity.

Digitization of biology

An example of how the digitization of biology accelerates vaccine development: The Novartis H7N9 influenza vaccine response – combining synthetic virus generation with flu cell culture platform

2013	
	 Sunday 31 March China CDC reports human infections w/ H7N9 influenza, post sequences on GISAID
Tuesday 2 April	_ Wednesday 3 April
Venter sythesizes HA & NA genes	Sythesized genes received in Cambridge. 1st transfection
Thursday 4 April	Saturday 6 April
Sythesized genes provided by NVD & Venter received at US CDC	1st evidence of rescue of vaccine virus
Monday 8 April	_ Thursday 11 April
Sequence confirmation of vaccine virus rescue	US CDC receives wild type virus from China
Friday 12 April	Friday 19 April
May	Virus released from customs to Uni MBG
Thursday 2 May	
1st round of limiting dilution subcloning	Monday 13 May
completed	2nd round of limiting dilution subcloning completed
Tuesday 14 May	Wednesday 15 May
German autorities notify NVD that	Sequence of HA & NA genes after
RG-ID-1003 can be manufactured at BSL2	subcloning confirmed
Thursday 16 May	Friday 17 May
Virus PCR – for bovine, porcine	Passing of virus in the seed lab begins
adventitious agents, shipped to NDV MBG GMP seed lab	Friday 24 May
Monday 27 May	Second Round of Passing in seed lab
Start of QC testing on seed lot	complete, start of seed lot manufacturing
Synthetic virus rescue in collaboration	Thursday 13 June
with Synthetic Genomics Vaccines Inc.	2500L fermenter inoculated to start
from Novartis.	production of Ph I CTM

Genomics: gene drives

- Mosquitoes and malaria:
- engineer mosquito populations for infertility
- engineer mosquitoes to be unable to carry malaria

Genomics: gene drives

International journal of science	Search
s & Comment Research	
; Opinion Research Analysis Careers Books & Culture	

Mice are the first mammals in which gene-drive technology has been tested. Credit: Stuart Wilson/Science Photo Library

NEWS • 06 JULY 2018

Controversial CRISPR 'gene drives' tested in mammals for the first time

Experiments in mice suggest that the technology has a long way to go before being used for pest control in the wild.

Ginkgo Bioworks is the organism company. We design custom microbes for customers across multiple markets. We build our foundries to scale the process of organism engineering using software and hardware automation. Organism engineers at Ginkgo learn from nature to develop new organisms that replace technology with biology.

Biology is the most advanced manufacturing technology on the planet.

We're inspired by the power of biology and driven to build tools that make it possible to access that power in new ways. If you're passionate about engineering with biology, please join us!

Rose oil from yeast Plants that fix N

Highest Concern

FIGURE 9-1 Relative ranking of concerns related to the synthetic biology–enabled capabilities analyzed. NOTE: At the present time, capabilities toward the top warrant a relatively high level of concern while capabilities toward the bottom warrant a relatively low level of concern.

NASEM 2018

